Collisional Stripping and Disruption of Super-earths
نویسندگان
چکیده
The final stage of planet formation is dominated by collisions between planetary embryos. The dynamics of this stage determine the orbital configuration and the mass and composition of planets in the system. In the solar system, late giant impacts have been proposed for Mercury, Earth, Mars, and Pluto. In the case of Mercury, this giant impact may have significantly altered the bulk composition of the planet. Here we present the results of smoothed particle hydrodynamics simulations of highvelocity (up to ∼ 5vesc) collisions between 1 and 10 M⊕ planets of initially terrestrial composition to investigate the end stages of formation of extrasolar super-Earths. As found in previous simulations of collisions between smaller bodies, when collision energies exceed simple merging, giant impacts are divided into two regimes: (1) disruption and (2) hit-and-run (a grazing inelastic collision and projectile escape). Disruption occurs when the impact parameter is near zero, when the projectile mass is small compared to the target, or at extremely high velocities. In the disruption regime, we derive the criteria for catastrophic disruption (when half the total colliding mass is lost), the transition energy between accretion and erosion, and a scaling law for the change in bulk composition (iron-to-silicate ratio) resulting from collisional stripping of a mantle. Subject headings: planets and satellites: formation — planetary systems: formation
منابع مشابه
Formation and Tidal Evolution of Hot Super-earths in Multiple Planetary Systems
Hot super-Earths are exoplanets with masses ≤ 10M⊕ and orbital periods≤ 20 days. Around 8 hot super-Earths have been discovered in the neighborhood of solar system. In this lecture, we review the mechanisms for the formation of hot super-Earths, dynamical effects that play important roles in sculpting the architecture of the multiple planetary systems. Two example systems (HD 40307 and GJ 436) ...
متن کاملMelting in super-earths.
We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures charac...
متن کاملExtremely long transition phase of thermal convection in the mantle of massive super-Earths
Adiabatic compression is a key factor that exerts control over thermal convection in the compressible solid mantle of super-Earths. To discuss the effects of adiabatic compression, we present a numerical model of transient convection in the cooling mantle of a super-Earth that is ten times larger in size than the Earth. The calculations started with the shallow mantle that was hotter than expec...
متن کاملOptimal measures for characterizing water-rich super-Earths
The detection and atmospheric characterization of super-Earths is one of the major frontiers of exoplanetary science. Currently, extensive efforts are underway to detect molecules, particularly H2O, in super-Earth atmospheres. In the present work, we develop a systematic set of strategies to identify and observe potentially H2O-rich super-Earths that provide the best prospects for characterizin...
متن کاملThe Albedos of Kepler’ S Close-in Super-earths
Exoplanet research focusing on the characterization of super-Earths is currently limited to the handful of targets orbiting bright stars that are amenable to detailed study. This Letter proposes to look at alternative avenues to probe the surface and atmospheric properties of this category of planets, known to be ubiquitous in our galaxy. I conduct Markov Chain Monte Carlo light-curves analyses...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009